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Abstract. We present an electronic structure study of a model of the decagonal quasicrystal 
Al-Cu-Co, proposed by one of us (SEE). Both quasicrystalline clusters and lheir crystalline 
counterpans are examined. The locations and the ratio of the concentrations of Cu and CO 
atoms in the model are found to be important in determining the shape and the magnitude of the 
density of States at the Fermi level. A local minimum in the density of states (DOS) at the Fermi 
level is exhibited only by cluskrs with a Cu concentration larger than Co. However, such clusters 
do not have the lowest internal (band) energy No DOS minimum at the Fermi level is obtained 
for Clusters with equal or nearly equal Cu and CO concentrations. Spectral functions reveal 
no evidence of a pseudogap originating from a Fermi-surfacelones-zone-boundar). interaction. 
Eigenstates at the Fermi level do not appear localired within the clusters used in our calculations. 

1. Introduction 

Thermodynamically stable decagonal quasicrystals AI-Cu-Co and AI-Ni-Co have been 
the subject of considerable recent interest. Experimental results [ l ]  on structural [Z- 
81 as well as thermal [9] and electrical [lo] transport properties on these alloys are 
now available. Burkov [ I l l  has presented a structural model for Al-Cu-Co (previously 
thought to be isostructural to AI-Ni-Co), in fair agreement with the available x-ray 
diffraction [71 and high-resolution electron microscopy (HREM) [5 ]  results. According to a 
comparison of the various models available for AI-transition metal decagonal quasicrystals 
by Henley [I21 this model is the best from the viewpoint of high-density packing without 
close pairs. The stability of this model has been examined by Phillips and Widom [ 131, using 
pseudopotential-based pair interactions. Recently Trambly de Laissardiere and Fujiwara [I41 
have studied the electronic structure of crystalline approximants based on this model. To date 
most electronic stmcture calculations for quasicrystals have been limited to the icosahedral 
phase [15-171, and its rational approximants. One common feature emerging from these 
calculations is a pseudogap (a pronounced local minimum in the density of states) at the 
Fermi level, E p .  The origin of this pseudogap is believed to be a Hume-Rothery-lie 
Fermi-surfacepseudo-Jones-zone-boundary (FS-JZB) interaction [ 181. The pseudogap at 
the Fermi level lowers the electronic energy and is deemed to be an important factor in 
stabilizing the icosahedral quasicrystalline phase. This is reminiscent of the Nagel-Tauc [ 191 
criterion for the stability of metallic glasses. 

The Burkov [ I l l  model agrees to a large extent with a three- and five-dimensional 
Patterson analysis of x-ray diffraction data and with direct-space atomic patterns found by 
high-resolution electron microscopy. However, experiments so far have not been able to 
distinguish between the locations of the Cu and CO atoms. Thus the model distinguishes 

0953-8984/95/285437c23$l9-50 @ 1995 IOP Publishing Ltd 5437 



5438 

only between the positions of the AI and the transition metal (TM) atoms (both Cu and CO 
being considered as TM). 

The object of the present paper is to study how the locations and the concentrations of 
Cu and CO atoms in the model intluence the internal energy and the shape and magnitude 
of the DOS at E F .  Changing the positions of the Cu and CO atoms results in a change 
of their relative concentrations, while the AI concentration remains fixed at a value T - 1 
(= t-I), where T is the golden mean. We wish to explore whether a pseudogap due to FS- 
JZB exists in the Burkov model. Recent experimental works on decagonal Al-Cu-Co and 
AI-Ni-Co quasicrystals [lo, ZOa] report negatively on the existence of a pseudogap. Basov 
and co-workers [ 101 have carried out optical and far-infrared conductivity measurements on 
high-quality decagonal & ~ C O & I ~ &  and A!&o&t&3 samples. From an analysis of 
their results they conclude that the pseudogap in these system, if present at all, must be far 
less developed than in icosahedral quasicrystals. Stadnik and co-workers [ZOa] have carried 
out photoemission spectroscopy on high-quality decagonal AlssColsCum and A170Co1sNi15 
alloys to determine the valence bands and find no evidence of a pseudogap in these systems. 
It is important to mention that similar measurements by Stadnik and co-workers [ZOb] on 
icosahedral quasicrystals show a pseudogap or gap at the Fermi level. Measurements of 
transport properties by Basov and co-workers [IO] on decagonal Al-Cu-Co samples also 
reveal remarkable anisotropy: electrical resistivity along the quasiperiodic plane is roughly 
15 times higher than that along the c axis. The enhanced resistivity in the quasiperiodic 
plane could be due to increased scattering or some kind of weak localization. To shed some 
light on th is  question we have examined the localization of states in this model. 

We have studied, in total, six structures. All of these reflect possible variations of the 
Burkov model. Two of these structures are not consistent with diffraction results. However, 
even these structures are worth studying. To quote from a recent article by Henley [12], 
all well packed models are worthy of study even when they contradict known experiments, 
since a proper theory of the origin of decagonals must explain not only the existence of the 
observed structures, but the non-existence of the unobserved ones. 

The electronic structure of the model is studied using the tight-binding linear muffin- 
tin orbitals (TB-LMTO) basis [21a] and the recursion method [ZZ]. In addition to the 
quasicrystalline phase, we have considered its crystalline counterpart, the thermodynamically 
stable crystalline alloy AI&usoCol~ [23]. By examining the spectral function for the 
quasicrystalline clusters, we obtain the (quasi)band sbucture along various symmetry 
directions in the quasiperiodic reciprocal plane as well as the periodic tenfold symmetry axis 
perpendicular to this plane, The localization of the eigenstates at the Fermi level is studied 
by calculating the generalized participation ratio [24], or the Zp-(pseudo)norm discussed by 
Tsunetsugu and co-workers [=I. 

The remainder of this paper is organized as follows. In section 2 we discuss some 
features of the Burkov model [l 11 that are relevant to OUT electronic structure calculation. In 
section 3 we present the electronic structures of various clusters with different concentrations 
and locations of the TM atoms in the Burkov model, and discuss the stability in the light 
of our electronic structure calculation. In section 4 we present the spectral functions, 
and discuss their relevance to the study of electrical conduction properties, as well as the 
possibility of (quasi)band gaps as a result of the Fermi-surface-pseudo-Jones-zone-boundary 
(FS-JZB) interaction. In section 5 we present the results of our localization study for various 
clusters. In section 6 we present a summary of our results. 
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2. Burkov model for the decagonal quasicrystal Al-Cu-Co 

Decagonal quasicrystals have a layered structure, with every layer being a two-dimensional 
quasicrystal. The stacking of layers along the tenfold ( z )  axis is periodic. In the Bnrkov 
model there are two plane layers per vertical period ( c  = 4.08A). Each layer has only 
a fivefold symmetry, but the layer at z = c / 2  is rotated 36" with respect to the layer at 
z = 0, revealing overall decagonal symmetry. The smallest interplane as well as intraplane 
interatomic distance is 2.44.k. In figure l ( a )  we show the latest version of the model [lla]. 
The model views the structure as consisting of two decagonal clusters, small and large. 
In the present work we will refer to them as small and large atomic motifs (SAM and 
LAM). In the original version [Ilb] the structure was viewed as a binary tiling with two 
Penrose rhombuses, with the tiling sites being occupied by these two trpes of cluster, or 
motif. In the latest version [ l la]  the tiling is viewed as the KIotz triangle tiling [26],  with 
only the LAM sitting at the tiling sites. In the original Burkov model when two large 
decagons (peripheries of LAM) touched, their outer rings shared an unphysically short AI- 
AI bond of length 1.77 A. These atoms have been moved using the pseudopotential-based 
pair interaction of Phillips and Widom [13]. The pseudopotential used by Phillips and 
Widom [I31 is not accurate enough to yield the best possible AI-AI equilibrium distance. 
However, the AI atoms that are relaxed using this pseudopotential constitute only 5% of 
the total number of AI atoms (10 out of a 198-atom cluster in figure ](a)), and the fact that 
these AI atoms are not at their optimum location should not drastically affect the electronic 
properties of the model. In figure ] (a )  the AI atoms are shown as circles, the Cu atoms as 
triangles and CO atoms as rectangles: empty symbols mark the z = 0 layer and full symbols 
the z = c / 2  layer. The large circle (not the LAM) centred at the origin of the cluster shows 
the boundary of the i98-atom (in a single plane) cluster used in our TB-LMTO recursion 
calculations (section 3). Figure I(b) shows the symmetry directions along which we have 
calculated the spectral functions (section 4). 

Since the experiments have not been able to distinguish between the Cu and CO atoms, 
there are various possible choices in the Burkov model for the positions as well as relative 
concentrations of Cu and CO atoms, all of which should be consistent with the available 
experimental data. Future experiments may further narrow, or e l i n a t e ,  this choice. In the 
absence of experimental data several theoretical speculative models were proposed. These 
theoretical suggestions are no more than hypotheses, in contrast with allocating AI and TM 
atoms, which could be classified as deciphering real quasicrystalline structures. One such 
proposed cluster, which we will call the Burkov cluster, was introduced in [ 1 la] as a mere 
illustration of how certain abstract mathematical concepts of Baake and co-workers [26] 
might be enforced in real quasiperiodic alloys. This model results in a concentration 
s' = (2  - s ) / 2  for Cu and CO atoms. 

We have calculated the electronic structure of the Burkov model as presented in 
figure ] (a)  [Ila], as well as its various modifications. One such modification, suggested by 
Phillips and Widom [13], consists of interchanging the two inner rings in the LAM. This 
change moves the AI atoms from the second ring, as in [ll],  into the innermost ring of 
the LAM. Phillips and Widom, based on their pseudopotentials, showed that this change 
results in a lowering of the energy. In the next section we present the electronic structures 
for the Burkov model of figure l(a), and the model with the ring interchange suggested 
by Phillips and Widom [13]. The latter will be referred to as cluster 1. We also consider 
various other modifications in the locations and concentrations of TM atoms. In table 1 
we present five chosen modifications in terms of locations and concentrations of Cu and 
CO atoms. These modifications are natural choices from the viewpoint of symmetry. There 
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are certain experimental indications [27] that at low temperatures nature favours a different 
relative ratio of Cu to CO, namely Cu,-Ko,+. The models referred to as clusters 2 and 4 
(the last one was originally proposed in [14]), are very close in composition to this ideal 
ratio. We rate these two models as the favourite ones in reflecting the structure of true stable 
decagonal quasicrystals, though no judgment can be passed until more experimental data 
become available. Cluster 5 is the same as cluster 2, with the ring interchange in LAM as 
proposed by Phillips and Widom [ 131. Cluster 3 was chosen to see the effect of drastically 
increasing the Cu concentration. Shuuctures with a higher CO concentration than Cu have not 
been studied in this work, since most experimental works on decagonal Al-Cu-Co systems 
appear to have been done on samples with either equal Cu and CO concentrations or with 
a Cu concentration higher than Co. 

Table 1. Band energies (I)  and Fermi level DOS for the various clusters along with their 
specifications. Burkov: cluster with atom locations exactly as in figure 1 of this paper or 
figure l(u) of [Ila]: cluster 1: the cluster with the second and first rings in LAM of Burkov 
cluster interchanged according to the recommendation of Phillips and Widom [13]; cluster 2: 
the cluster with the CO atoms in the third shell of the LAM of Burkov cluster changed to Cu; 
cluster 3: the cluster with the thud shell remaining the same as in the Burkov model, but all 
other locations of TM atoms occupied by Cu: cluster 4: the cluster with the third shell in the 
LAM of Burkov cluster being occupied by CO, and other TM locations being occupied by Cu; 
cluster 5 :  the same as cluster 2 with the ring interchange in LAM proposed by Phillips and 
Widom [I31 

Band energy N ( E F )  
Cluster Composition' (Rydtatom) (stateflyd atom spin) N ~ ( E F ) / N ( E F )  

Burkov &CUtgCoig -0.9183 2.22 0.57 
Cluster 1 Als iCu~eCo~p  -1.6098 3.44 0.70 

0.50 
058 
0.60 
0.62 

a The composition is given to the n e w t  correct two digits for the finite clusters used in the 
calculation. 

3. Electronic structure and stability 

Our results for decagonal Al-Cu-Co are based on recursion method 1221 calculations 
performed in the tight-binding linear muffin-tin orbital (TB-LMM) basis [Zla] for clusters 
containing 2376 atoms. These clusters consist of 12 layers (parallel planes), with 198 
atoms in each layer. In figure I(a) the large circle at the centre of the Burkov model 
shows the boundary of the 198-atom (per plane) cluster used in the recursion calculation. 
Since figure l(u) shows two planes of atoms, the total number of atoms within the circular 
boundary shown is 396. The 2376-atom cluster is obtained by repeating this 396-atom 
cluster six times in the z direction. The basic Burkov model cluster, which we refer to as 
the Burkov cluster in our discussions, is the one in which the positions of the Cu and the 
CO atoms are as described in the caption of figure l(u). It has an equal number of Cu and 
CO atoms and is compositionally close to AI,-1Cu,Co,,, 5' = (2 - t)/2. The five other 
clusters studied by us (and referred to as cluster 1, cluster 2 etc) are just modifications of 
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this basic cluster, obtained by changing positions and types of atoms as described in the 
caption of table 1, and in the last paragraph of section 2. 

We consider the AI, Cu and CO atoms in all inequivalent locations in the central region 
of a cluster and obtain the projected DOS on these atoms using the recursion method. 
The average DOS for the cluster is obtained from the proper weighted average of the 
atom-projected densities of states. The one-electron Hamiltonian is represented in the TB- 
L M M  basis using free boundary conditions in the z direction as well as in the xy plane, 
i.e. there are no matrix elements of the Hamiltonian connecting atoms across the faces of 
the cluster. Self-consistency in charge density and potential is achieved using the density 
functional theory with the local density approximation. Sphere radii are chosen such that 
the self-consistent electronic structure yields approximately charge neutral spheres. The 
exchange-correlation energy functional of von Barth and Hedin 1281 is used. The local 
orbital-projected densities of states are obtained from the imaginary parts of the diagonal 
elements of the one-electron Green function expressed as a continued fraction. We have 
used different ways of terminating the continued fraction expansion of the Green function, 
namely the methods of Beer and Pettifor [29a] and Allan [29b]. We have also checked the 
stability of our results by varying the number of continued fraction coefficients. The results 
presented here were obtained by using the Beer-Pettifor terminator [29a] and typically 10s. 
15p and 30d coefficients. The terminator due to Allan [29b] yielded similar results. Readers 
interested in the details of the TB-LMTO recursion method may consult 1301. 

The DOS for decagonal Al,-tCu,Co,,, 5’ = (2 - r ) /2  (i.e. for the basic Burkov cluster) 
is shown in figure 2 ( ~ ) .  For the sake of comparison, in figures 2(b) and 2(c) we present 
the DOS of the crystalline alloys Al&12oCo20 and AlaCu&olo, respectively. The DOS 
for these crystalline alloys are calculated via the standard (k-space) LMTO method using 
the atomic sphere approximation (ASA) [21 b]. The same exchange-correlation potential 
(von Barth and Hedii [28]) is used in the k-space LMTO-ASA calculation (for figures 2(b) 
and (c ) )  as in the TB-LMTO recursion calculation (for figure 2(a)). In the ASA one replaces 
the muffin-tin spheres with space-filling, and therefore slightly overlapping, WignerSeitz 
spheres and neglects the remaining interstitial region. The method yields reliable results for 
all close-packed structures, as well as those open structures that can be close packed with 
the addition of interstitial (‘empty’) spheres. In our calculation the errors due to ASA are 
minimized by using the combined correction as described in [Zlb], where all the details of 
the LMTO-ASA method are also available. 

The crystalline alloy Al~CumColo exists in a thermodynamically stable trigonal (AI3Ni2 
type, but IO atoms per unit cell) structure [23] with a = 4.112A and c = 9.916A (space 
group P%nl) .  The crystalline alloy Al~aCu&o~r is somewhat hypothetical in the sense 
that it is not thermodynamically stable, although there are indications [23] that disorder in 
the location of Cu and CO atoms may stabilize this alloy in the same smcture (AlsNi2 
type, five atoms per unit cell, Q = 4.112A and c = 4.958A) as AlsaCu3oCoto. The 
former is included in our study simply because it has equal numbers of Cu and CO atoms 
and is thus suitable for comparison with the Burkov cluster for decagonal Cu-Al-Co 
with equal Cu and CO concenaations. The DOS in figures 2(b) and (c) for crystalline 
Al&umCozo and AI&u.JoCO~O, respectively, are obtained using five-atom and 10-atom 
unit cells with atom positions as specified in [23J. As can be seen in figure Z(c), there is a 
small minimum in the DOS at EF for the thermodynamically stable crystal Al&u3oColo, 
and our calculation yields a slightly higher cohesive energy for this crystal than for the 
hypothetical crystal Al&u&%. Neither the Burkov cluster (figure 2(a)) nor crystalline 
A I & I & ~  (figure 2(b)) shows a local minimum in the DOS at the Fermi level. The 
implication is that for Cu to CO ratio equal to one, neither the decagonal phase nor its likely 
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E (RY) 
Figure Z DOS for the Burkov cluster (figure 1) of decagonal Al-Cu-Co and its crystalline 
counterparts (a) decagonal phase, (b) bigonal Al~oCu2oCoza (may not be thermodynamically 
stable), (e )  trigonal AlwCu&w (thermodynamically stable). The zero of energy has been set 
to the Fermi level. 

crystalline variant is stabilized via a Hume-Rothery mechanism, i.e. a pseudogap at the 
Fermi level. 

Next. we consider variations on the Burkov model, as discussed in section 2. Our results 
are summarized in table 1 (the original model shown in figure 1 being labelled as Burkov, 
and the variations labelled as cluster 1, cluster 2, etc, as described in the caption to table 1). 
In figure 3 we show the DOS of these clusters, along with the contributions from the various 
component atoms. The zero of energy has been set at the Fermi level. Clusters 2 and 4 
show minima in the DOS at Ep. Cluster 3 shows a shallower minimum, while clusters 1 
and 5 do not. Looking at the component DOS we find that the local minima at E p  can arise 
due to different factors. For example, in cluster 3 the local minimum appears mainly from 
a small peak in the CO DOS slightly above the Fermi level, while in cluster 2 the minimum 
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is due to a sharp drop in the TM DOS around E.=, coupled with an increase in the AI DOS 
above E r .  Our analysis of DOS and spectral functions indicates that hybridization between 
TM d and AI s. p states is primarily responsible for the local minima in the DOS, rather 
than the FS-JZB interaction. Positions of the atoms in cluster 4 are similar to those in 
the crystalline approximant of the Burkov model presented by Trambly de Laissardiere and 
Fujiwara [I41 using the standard LMTO-ASA method. The pseudogap in their crystalline 
(k-space) calculation is understandably somewhat deeper than that obtained by ow real- 
space (recursion method) finitecluster calculation. The magnitude of N ( E r )  for cluster 4 
is about 50% higher than in the crystalline approximant calculation of [14]. It is clear from 
figure 3 that the shape and the magnitude of DOS at the Fermi level are strongly dependent 
on the locations and relative concentrations of Cu and CO atoms. This is in agreement with 
the conclusion reached by Trambly de Laissardiere and Fujiwara 1141. 

In table 1 we have presented the ratio of the d-orbital-projected DOS and the total 
DOS ( N ~ ( E ~ ) / N ( E F ) ) .  This ratio shows that the eigenstates at the Fermi level for the 
various clusters used have roughly 40% s-p character. The mobility or the diffusivity (see 
[31,32] for a quantitative definition) of the s and p states in transition metal glasses or 
liquids is usually several times larger than that of the d states. For example, a TB-LMTO 
recursion study of liquid 3d transition metals [31] shows that the diffusivity of the s and 
p states in these systems is typically seven to 12 times larger than that of the d states. In 
decagonal quasicrystals, the diffusivity (hence the conductivity, which is the product of the 
DOS at the Fermi level and the diffusivity) in the direction of the tenfold axis is infinite 
due to periodicity. Finite conductivity in this direction can arise only due to phonons and 
defects. However, in the quasiperiodic plane finite diffusivity can result due to departure 
from periodicity and experience from transition metal glasses suggests that the in-plane 
diffusivity and conductivity should be dominated by the s and p states. Thus, while the 
stability and the binding energies of the decagonal Al-Cu-Co quasicrystals are dictated 
by the d states, and, therefore, the positions and concentrations of the TM atoms, their 
electrical conduction properties in the quasiperiodic plane should be dictated by s-p states 
and, therefore, the AI atoms. 

lo column 3 of table 1 we present the band energies per atom for the various clusters 
relative to the atomic energies defined as 

R F SabiryaMv et a1 
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where $*'(E) is the DOS projected on to the atom of type a in one of its inequivalent 
locations i. E p  is the Fermi level. CO,/ is the concentration of the atom type a in location i 
and C, = C=J. Ef is the energy level for the orbital quantum number, I ,  in a free atom 

of type a. Nf is the occupation of the energy level Ef in a free atom a. The integral in (I), 
which gives the one-electron band contribution to the total energy of the solid, includes the 
kinetic energy of the electrons, the H m e e  (electron-electron Coulomb interaction) energy 
and the exchangecorrelation energy. The latter two quantities are actually counted twice 
in this integral. Equation (1) would represent the cohesive energy if the first term on the 
right-hand side were replaced by the total energy. The total energy of the solid consists of 
this one-electron band term (the integral in (1)) plus an electrostatic term to account for the 
Coulomb repulsion of the ion cores, the correction for double counting the electron-electron 
Coulomb interaction and the exchange-correlation energy in the band term and a Madelung 
energy in case of charge transfer between atomic spheres. Since our atomic spheres are 
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Figure 3. The DOS for vkious clusters Full curve: total DOS; dotted curve: Al DOS; broken 
curve: CO DOS; long-dash and short-dash broken curves: Cu DOS. See table 1 for specificalion 
of the cluster labels. The .?em of energy has been set 10 the Fermi level. 

kept neutral this last term is zero in our calculations. In the absence of the electrostatic term 
Eb is not the cohesive energy. However, changes in this energy should reflect reasonably 
well the changes in total energies, as long as the lattice (in our case quasilattice) structure 
remains unaltered. For metallic alloys this prescription is known to approximate reasonably 
well the changes in the heat of formation [33,34]. 

Among the clusters we have studied there is none with both a local minimum in the 
DOS at E.c and minimum internal energy. Note that for cluster 4, which shows the most 
pronounced local minimum in the DOS at EF, the band energy is the highest. A local 
minimum in the DOS at the Fermi level only indicates that the given structure is favoured 
from the point of the band energy. It does not assure the local stability of the structure 
itself because a small change in the structure may strengthen the minimum. It implies local 
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stability for the given structure only against small changes in the composition and location 
of (some) atoms, assuming such changes do not alter the shape of the DOS, since such 
changes would move the Fermi level away from the minimum increasing the band energy 
(and therefore, most likely, the total energy as well). Thus if a system like cluster 4, with 
a DOS minimum at El: but high band energy, is allowed the possibility of large changes 
in the concentrations and locations of Cu and CO atoms, it would certainly do so. From 
the view point of internal energy alone, the system will probably choose cluster 3, with a 
marginally different Cu/Co ratio, over cluster 4, since cluster 3 has a lower Eb, and also 
shows a local minimum (although a little less pronounced than for cluster 4) in the DOS at 
El: (see figure 3 and table 1). We see that the Phillips and Widom prescription (cluster 1 
of table 1) of moving the AI atoms from the second ring to the innermost ring in the LAM 
does lower the energy, as defined by (1). 

A comment about the neglect of the electrostatic term is in order at this stage. As 
mentioned earlier, by keeping our spheres almost charge neutral we avoid the problem of 
having to calculate any Madelung term. We should examine how the neglect of the ion 
core repulsion affects our results. Since the Cu and CO cores have the same positive charge, 
interchanging the position of these atoms does not change the energy of repulsion of their 
ion cores and the change in the band energy is a very good measure of the change in 
total energy in this case. When the positions of AI and TM atoms are interchanged the 
electrostatic term due to ion core repulsion changes. However, in our study this happens 
only when we move the AI atoms from the second ring of LAM to the first (innermost) 
ring and correspondingly, the TM atoms from the first to the second. Since the AI core 
has less positive charge (three instead of 10) than Cu and CO, the electrostatic energy of 
repulsion when the AI atoms are in the first ring is less than when the fist ring is occupied 
by the TM atoms. On top of this we find that even the band energy is reduced as a result of 
moving the A1 atoms from the second to the first ring. Thus the inclusion of the electrostatic 
term would only reinforce our conclusion about the total energy being less for the AI atoms 
occupying the innermost ring of LAM. 

To examine the differences in  the internal energies of various clusters we have considered 
the atom-projected DOS. In figures 4-6, we show the DOS projected on to inequivalent 
CO and Cu atoms in three clusters. A comparison of the atom-projected DOS in figures 4 
and 5 shows that moving AI atoms from the second to the innermost ring in the LAM, as 
suggested by Phillips and Widom [13], results in considerable lowering in the energies of 
the TM atoms. Similarly in cluster 4, which shows the most pronounced DOS minimum 
at E,=, the energy is higher mainly because the energy of Cu atoms has gone up. Note 
that the CUZ atoms in cluster 4 are the most abundant ones. The A1 DOS, which is more 
or less spread over the entire energy range, does not change as strongly as the TM DOS 
from one cluster to another. The contribution of the AI atoms to the total binding energy 
is small compared with that of the TM atoms. In figure 7 we show the DOS of the two 
most abundant AI atoms in the Burkov model and in cluster 4. The AI DOS for cluster 4 
shows a more pronounced minimum at E,=. Looking at the partial (orbital-projected) DOS 
we find that this minimum is mainly due to a minimum in the p DOS. Our study of the 
spectral functions (see section 4) reveals that this minimum is due to the p 4  hybridization, 
and not due to scattering of the p electrons of energy EF by the quasiperiodic potential at 
the Jones zone boundary. 

Extensive experimental work by Grushko [27] shows that the decagonal phase in the 
Al-Cu-Co system is stable in the temperature range 550-1000 "C. The low-temperature 
phases contain more Cu than Co. Clusters 2-5 studied by us are thus among the likely 
low-temperature smctures. Among these, cluster 4, with the deepest pseudogap, has the 
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Figure 4. Tb-atomprojected DOS in the Burkov cluster. Subscript 1 refers to TM atoms in 
the third shell of Be LAM. Subscript 2 refers to the average of Be SAM DOS and that of the 
imemost ring of the LAM. The zero of energy has been set to the Fermi level (full curve. total 
DOS; broken curve, s DOS; dotted curve. p DOS; long- and shorldash broken curve, d DOS). 

maximum local stability. Clusters 2 and 3 have lower internal energies, but shallower 
minima in the DOS at Er;. Clusters 1 and 5 ,  obtained by the Phillips and Widom ring 
interchange [13], are inconsistent with the diffraction results and have no local minima in 
the DOS at E F ,  i.e. no local stability against small changes in composition and locations 
of atoms. The fact that these two clusters have lower energy than all the other clusters 
indicates that the Burkov model, although consistent with the diffraction results, does not 
allocate atomic positions corresponding to minimum internal energy. 

With increasing temperature there can be larger variations in the relative concentrations 
of the Th4 atoms. Phases with roughly equal amounts of Cu and CO become stable at 
higher temperatures [271. The clusters with equal Cu-Co composition (Burkov cluster, 
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cluster 1) are neither the lowest-energy clusters according to OUI calculation, nor do they 
show any local minimum in the DOS at E F .  It is possible that such compositions become 
thermodynamically stable due to a minimum in the free energy rather than in the internal 
energy. If we consider the changes in free energy as a result of changes in the CdCo 
ratio (with the possibility of complete disorder in the locations of these atoms, with the 
AI positions fixed), then at a given temperature the free energy is a minimum (the entropy 
is a maximum) for Cu/Co = 1. We have calculated the energy change associated with 
interchanging Cu and CO atoms. Within a given ring the energy change is very small, 
varying between -0.11 mRyd and 0.21 mRyd per such Cu-Co interchange. But these 
interchanges can give rise to an entropy change, such that the free energy change becomes 
the dominant factor in stabilization. This may also be the reason why the crystalline 
structure & O c U & ~  is not thermodynamically stable, while the quasicrystalline phase 
A I ~ ~ C U I & O ~ ~ ,  with the possibility of disorder in the positions of Cu and CO atoms within 
a given ring, is stable. A similar conclusion regarding the stability of icosahedral AlZnMg 
against the corresponding crystalline approximants was arrived at by Hafner and KrajEi 1151. 
In order to verify this possibility one needs to calculate accurately the free energies for 
various clusters. This is a difficult task even for crystalline systems. 

4. Spectral functions 

Whether or not an electron-lattice interaction at wave vectors corresponding to a (pseudo) 
Jones zone boundary is responsible for certain features of the DOS can be explored via 
spectral functions [30,31], S(k, E ) .  For certain icosahedral quasicrystals this has been done 
by Hafner and KrajEi [15,16]. Niizeki and Akamatsu [35] have studied the spectral densities 
in a 2D Penrose lattice, but no theoretical study of spectral functions for real decagonal 
quasicrystals has as yet been presented. We calculate S(k, E )  as the DOS projected onto a 
Bloch-lie combination of the orbitals in the cluster, as described in [31]. By following the 
peaks in S(k, E )  for various wave vectors, k, one can map an effective dispersion relation 
( E  against k) for the energy eigenstates. The absence of any pronounced peak in S(k, E )  
indicates the inappropriateness of the corresponding k values in describing the eigenstates 
of the system. 

The high-symmetry points and the high-symmetry axes for decagonal quasicrystals have 
been completely enumerated by Niizeki [36]. There are 10 classes of high-symmeiry axes 
in the quasiperiodic plane for a decagonal quasicrystal. We calculate the spectral functions 
along three of the symmetry axes in the quasiperiodic plane and the L axis, the direction of 
periodicity. In figure I(b) we have shown these symmetry directions. The notation we use 
follows closely that of Niizeki [36]. r represents the origin of the cluster in the x y  plane. 
One can introduce 10 basis vectors (ei, i = 1,. . . , 10) directed along the sides of the Klotz 
triangles [26] at the origin of the cluster. Then C is the direction joining the origin to one 
of the atoms in the atomic ring closest to the origin (say, along the vector el + e2). with the 
point P' being on the Jones zone boundary (i.e. rP' is half the strongest scattering vector 
in the direction E). The symmetry direction A, along the vector el, makes an angle of 18" 
with this direction and X is the point on the JZB in this direction. The notation Z is used 
to denote the centre of the Jones zone boundary in the z direction. 

In figure 8(a) we show S(k, E )  along the symmetry direction C in the quasiperiodic 
reciprocal (k,, k?) plane, calculated for the basic Burkov cluster (large circle centred about 
the origin in figure l(a)). Figure 9(n)  shows the same for the periodic r Z  direction. In the 
(b) parts of the corresponding figures we show the E against k relations as deduced from 
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Figure 6. TM-atom-projeckd DOS in cluster 4. CO in the Wid shell of the LAM. CUL: Cu in 
the SAM, C U ~ :  Cu in the innermost ring of the LAM. The zem of energy has becn set to the 
Fermi level (the meaning of the various curves is the same as in figure 4). 

the peaks in S(k. E ) .  Figure 10 is a schematic quasi-band structure for the Burkov cluster, 
deduced from the peaks in S(k, E ) .  Figure 11 is a similarly deduced quasi-band structure 
for cluster 4, where the spectral function is shown resolved into various orbital components 
denoted by different symbols. In figures 8(b), 9(b), 10 and 11, the points obtained from the 
positions of the peaks in the spectral function have been joined by hand simply to guide 
the eye. No symmetry analysis was done to determine crossing or noncrossing of bands. 

The first three sections of figure 10 (r-X, X-F, P’-r) show the bands in the 
quasiperiodic plane and the last section shows the bands in the z direction. It is interesting 
to see that our real-space calculations, based on finite-size clusters with free boundaries, 
reveal clearly the periodic distribution of the points (in the extended zone scheme) along 
k,, and their quasiperiodic distribution in the (kx, ky) plane. This is in sharp contrast with 
the behaviour of S(k. E )  in amorphous materials [30], where sharp peaks appear only for 
small value of k corresponding to wavelengths many times the nearest-neighbour separation. 
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Figure 7. Atom-projected DOS for the hvo most abundant AI atoms in the Burkov cluster and 
cluster 4. The zem of energy has been set to the F e d  level (the mwning of the various ewes 
is the same as in figure 4). 

Note also that the periodicity in the z direction emerging from our calculations is twice the 
periodicity one expects from simple geometrical considerations. The expected value of the 
period in the z direction is Z H / C  where c = 4.08 A. This yields a value of 1.54 A-', whereas 
our calculations reveal that, in figures 9 and 10, rZ = 1.54A-', i.e. periodicity in the z 
direction of 3.08 A-'. This effect was predicted by Luck and Kek [37] solely on symmetry 
considerations: the decagonal quasiclystal possesses a screw axis, very much like the h.c.p. 
structure, resulting effectively in obliteration of the odd Bragg planes at (2n + l )n / c ,  again 
reminiscent of what happens in the h.c.p. structure. The peak positions in S(k, E )  in the 
(kx,  ky) plane are related to the positions of atoms in the Klotz triangle tiling [ZS] used 
in the Burkov model [Ilal. This tiling gives rise to more than one (quasi)periodicity, 
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Figure 8. Spectral function ( a )  and quasi-band structure (b) along lhe symmetry direction Z 
(see figure l(b) for reference) in the quasiperiodic (1. ky) plane in decagonal Al-Cu-Co for the 
Burkov cluster. The horizontal broken line shows the Fermi level. In (b) the points oblained 
from the positions of the peaks in lhe spectral function have been joined by hand simply lo 
guide the eye. No symmetry analysis was done to determine crossing or noncrossing of bands. 

involving different groups of atoms and dictated by T, along the symmetry directions in the 
( x ,  y )  plane. This is reflected in S(k. E )  shown in figure 8. In figure 8(b) the smallest 
period is 3.08A-' (rl), and JZB along this symmetry line is at P' = 1.54A-'. The next 
r point (F2) is at 5.05A-', with rrz/iTl = 5. Additional features appear in S(k, E )  
at effective or quasi-Brillouin zone boundaries (qBZB). We have identified with boxes two 
such noticeable features in figure 8(b), one outside (at P2) and the other inside (at PI) the 
JZB, P. We find that YP,/FP' = rP/rP, = T. The quasi-band structure consists of 
parabolic s bands in the low-energy region. Closer to (but below) E,= the bands are mostly 
d-like and dispersionless, indicating a high effective mass for the caniers in these states. 
Near and at EF there are both flat (dispersionless) and parabolic bands, although this may 
not be clear from the plot of the most intense peaks shown in figure 10. A vestige of gaps 
as a result of parabolic s band and qBZB interaction appears at energies much below Er; 
(see boxed features in figure 8(b) and lo), but such gaps do not extend across the entire 
zone. No such feature, originating from FS-JZB (or q B B )  interaction, can be detected in 
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Figure 9. Same as figure 8, along the periodic kz direction. Z denotes the point on the Jones 
wne boundary in this direction. 

the bands near EP. There are also features indicative of the interaction at qBZB, which 
do not seem to result in noticeable gaps (such as the one marked with ? in figure 10). 
Note that while a gap like the one marked by a square in figure 10 can be believed to 
be due to a free-electron getting scattered by a quasiperiodic lattice at one of the possible 
quasi-Brillouin zone boundaries, a gap like XlXz in the s band appearing at the Jones zone 
boundary X in figure 10 is due to the s 4  hybridization. Without the hybridization this gap 
would have been much narrower and far below the Fermi level. 

In figure 11 we show the (quasi)band structure for cluster 4, which shows the most 
pronounced DOS minimum at E p .  If the FS-JZB interaction is at all responsible for this 
pseudogap, we should see some indication of that in the spectral functions, as observed 
by Hafner and KrajEi [15,16] for icosahedral quasicrystals. The situation as depicted by 
figure 11 is different from that in icosahedral quasicrystals. Spectral functions for icosahedral 
quasicrystals studied by Hafner and KrajEi [15,16] show a series of highly degenerate free 
electron states near the Fermi level. Such states do not appear in our calculation. There are 
virtually no s bands appearing near the Fermi level, in the quasiperiodic ( k x ,  ky) plane. 

The band structure presented in figure 11 reveals the presence of an s band (parabolic) 
near the Fermi level in the kz direction. Presumably such parabolic s bands are also present 
in the k: direction for other clusters. In figures 9 and 10 (for the original Burkov cluster) 
the shape of this band is somewhat different, due to different hybridization effects. In the 
quasiperiodic plane mostly flat bands seem to appear near E F .  Parabolic freeelectron-like 
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Fie 10. Quasi-baud structure in the Burkov cluster for decagonal Al-Cu-Co as deduced 
from spectral functions. The symmetry directions are indicated in figure l(6). The horiwntal 
broken l i e  shows the Fermi level. points obtained from the pasitions of the peaks in the 
spectral function have been joined by hand simply to guide the eye. No symmetry analysis was 
done to determine crossing or noncrossing of bands 

bands near EF in the z direction and less dispersive flat bands in the quasiperiodic plane 
may be responsible for the large anisotropy in the in-plane and out-of-plane conduction, as 
observed by Basov and co-workers [IO]. Although this may not be absolutely clear from 
the spectral function based on ow real-space calculations, this view is strongly supported 
by a decagonal plane-wave model calculation recently reported by us 1381. 

To summarize this section, OUT spectral function calculation based on clusters with 
free boundaries reveals the periodicity and the quasiperiodicity of the model, but does not 
provide any evidence of a FS-JZB. As mentioned in the beginning of this section, there 
are 10 classes of high-symmetry axes in the quasiperiodic x y  plane, and we have studied 
the spectral function along only three of these, in addition to the z direction. The primary 
purpose here was to see whether there is any indication of energy gaps opening up at JZB 
due to interaction of nearly free electrons with the (quasi)lattice. There is no strong evidence 
of this from the spectral functions for the four symmetry directions considered. 

5. Localization in the Burkov model 

The results of the previous section show that k is most likely a good quantum number for 
the three symmetry directions in the quasiperiodic plane for which spectral functions were 
studied. In the absence of the Bloch theorem, however, one cannot rule out the possibility 
that the eigenstates in the quasiperiodic plane, in some energy regions, are localized or 
critically localized. Note that the eigenstates are extended in the z direction as a result of 
periodicity. 
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Figure 11. Quasi-band struchre in clwtei 4 for decagonal Al-Cu-Co. as deduced from spectral 
functions. The symmetry directions ax indicated in figure Ub). me horizonlal broken Line 
shows the Fami level. s, p and d bands are shown separately with full rectangles, triangles and 
empty circles, respectively. The points obtained from the positions of the pede in the spectral 
function have been joined by hand simply to guide the eye. No symmetry analysis was done to 
determine crossing or noncrossing of bands. 

Measurement of the optical conductivity of high-quality decagonal quasicrystals 
A I & o ~ ~ C U ~ ~  and AlslColsCu&s by Basov and co-workers [lo] shows a strong anisotropy 
between the periodic and quasiperiodic directions. The FIR resistivity in the periodic 
direction is about 10 times smaller than that in the quasiperiodic plane. The latter is about 
two to 2.5 times larger than that of strong-scattering metallic glasses and liquid metals. 
While the resistivity in the periodic z direction is due to phonons and defects, the increased 
resistivity in the planes could be caused by a drastic increase in the scattering rate due to 
quasiperiodic order. Alternatively, the increased in-plane resistivity could be due to some 
sort of weak Iocalization or critical nature [25] (neither extended nor localized) of the states 
in the plane. Diffusivity (as in [31]) of the critical states, and hence their contribution to the 
conductivity, should be substantially lower than that of the extended states. To study the 
localization of the eigenstates at the Fermi level we have used the concept of the generalized 
participation ratio [24] or the p-@seudo)norm 

discussed by Tsunetsugu and co-workers [25] in the study of localization in two-dimensional 
Penrose tiling. Here the uj are the weights of the eigenstates on the orbitals in the cluster. 
The eigenstates at EF were calculated using the filtering technique discussed in 1391. In 
figure 12 we show the variation of 01 with the number of atoms in the Burkov cluster 
(figure 1) for the p = 2 case only. The variations for the p = 3 and p = 4 cases are 
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qualitatively similar. Two se& of calculations were performed. In one case we considered 
two layers of atoms and gradually increased the number of atoms in the two layers (curve a). 
Next we kept the number of atoms in the quasiperiodic plane fixed at 198, and gradually 
added more and more layers (curve b). In view of the fact that the states are extended in 
the z direction the latter may appear a nivial exercise, but was performed to see whether the 
periodicity in the z direction has a negative effect on the localization in the quasiperiodic 
plane. For a completely extended state with equal weight on each orbital in the cluster, 
ap should vary as N'-P,  where N is the number of atoms in the cluster. For localized 
states olP should saturate at a value, indicative of the number of atoms over which the state 
is localized. There is no such saturation for the two cases within the clusters used in the 
calculation. Thus our calculation reveals no indication of localization within the span (50& 
of the clusters used. The fact that the observed decrease in ap is slower than N 1 - p  (curve 
c) is due to the fact that the weights on various orbitals are not the same, even though 
the state is extended. There is also a possibility of weak localization, with the localization 
length being larger than the maximum span of the clusters (50A) used. The decrease in ap,  
when the number of atoms in the quasiperiodic layers is increased, is slower than when the 
number of layers is increased with the number of in-plane atoms held constant. This, since 
the eigenstates possess infinite localization length in the z direction due to periodicity, could 
be taken as an indication that the states are weakly localized in the x y  plane with large but 
finite localization length. However, this is speculation: all that can be said with certainty is 
that the states are not localized within a span of 50A. We have carried out similar studies 
on a few other clusters from table 1, and the results remain qualitatively unchanged. 
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Figure 12. Variation of the pseudo-(p-)norm. up, of the wavefunction at the Fermi level with 
cluster size, N, on a log-log plot, for the Burkov cluster for decagonal AI-Cu-Co. See text for 
the distinction between the ewes.  



Electronic structure of a decagonal AbCu-CO model 5457 

6. Conclusions 

All OUT conclusions apply strictly to the Burkov model, and generalizations to decagonal 
quasicrystals at large should be made with reservation. The stability of the model depends 
crucially on the locations and concentrations of the two TM atoms. This is summarized 
in figure 13 (also table 1). where we indicate the shape of the DOS along with the band 
energies for the Burkov cluster and its variations. Some modifications show local minima in 
the DOS at E F ,  indicating local stability against small changes in composition and location 
of TM atoms in the given structure. Cluster 4, with the most pronounced minimum, reflects 
the favourite smcture from the viewpoint of such local stability. Clusters 2 and 3 have 
lower internal energies, but shallower minima in the DOS at E F .  All clusters with a local 
DOS minimum at or near EF have substantially higher Cu (twice or more) concentration 
than Co. 

B 
h 

w 

Burlcov model and  variations 
Figure 13. Band energies and the DOS new EF for the Bur!av cluster ond its variations. The 
vesical line shows the position of the Fermi level. Cu and CO concenbations for the various 
clusters are also indicated. 

The local minima in the DOS at EF for clusters 2 4  are due to different shapes of the 
component atom DOS. The principal cause of these minima is the hybridization between 
AI s, p and Th4 d states, and not FS-JZB. This last conclusion is based on a study of spectral 
functions, which do not reveal any gaplike feature in the s bands near the Fermi level. Some 
gaplike features appear in s bands at wavevectors corresponding to some quasi-Brillouin 
zone boundaries, at energies much helow E F .  Such gaps do not extend across the entire 
zone. 

The original Burkov model as well as the model suggested by Phillips and Widom [13] 
(cluster 1) does not have a DOS minimum at E F .  Both of these models have equal 
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concentrations of Cu and CO atoms. We suggest that such structures might be stable due to a 
maximum in the entropy (minimum in free energy) associated with possible disorder in the 
locations of TM atoms [@I. This may also explain why experiments indicate that decagonal 
Al-Cu-Co quasicrystals with equal concentrations of Cu and CO are thermodynamically 
stable, while a crystalline structure with similar concentrations is not. Optical conductivity 
(including the IR and FIR region) measurements by Basov and co-workers [IO], and more 
recently valence band photoemission experiments by Stadnik and co-workers [20], done 
on decagonal AlZu-Co samples with equal or nearly equal Cu and CO concentrations, 
report negatively on the existence of a pseudogap at E F .  These experiments as well as 
the results of the present paper strongly suggest that these alloys are not stabilized via the 
Hume-Rothery mechanism. 

A decagonal plane-wave model calculation recently presented by us [38] reveals that 
the periodicity in the z direction is responsible for reducing or obliterating the pseudogap 
in the DOS. Nearly dispersionless bands in the quasiperiodic plane appear in this model, 
and show a gap in the DOS for a 2D system. For a 3D system, periodic in the z direction 
and quasiperiodic in the (x, y) plane, there are parabolic bands in the kz direction running 
through the gap region. These parabolic bands destroy the gap and change it to only 
a shallow minimum in the DOS. This conclusion applies strictly to a free-electron-like 
system. The presence of TM atoms in real decagonal quasicrystals such as Al-Cu-Co will 
change this picture somewhat. Depending on the AI-TM band hybridization, there may 
sometimes be a weak pseudogap, and sometimes the pseudogap may be nonexistent, as 
observed in the present calculation. 
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